Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
N Engl J Med ; 386(25): 2387-2398, 2022 06 23.
Article in English | MEDLINE | ID: covidwho-1900733

ABSTRACT

BACKGROUND: Studies that have evaluated the use of intravenous vitamin C in adults with sepsis who were receiving vasopressor therapy in the intensive care unit (ICU) have shown mixed results with respect to the risk of death and organ dysfunction. METHODS: In this randomized, placebo-controlled trial, we assigned adults who had been in the ICU for no longer than 24 hours, who had proven or suspected infection as the main diagnosis, and who were receiving a vasopressor to receive an infusion of either vitamin C (at a dose of 50 mg per kilogram of body weight) or matched placebo administered every 6 hours for up to 96 hours. The primary outcome was a composite of death or persistent organ dysfunction (defined by the use of vasopressors, invasive mechanical ventilation, or new renal-replacement therapy) on day 28. RESULTS: A total of 872 patients underwent randomization (435 to the vitamin C group and 437 to the control group). The primary outcome occurred in 191 of 429 patients (44.5%) in the vitamin C group and in 167 of 434 patients (38.5%) in the control group (risk ratio, 1.21; 95% confidence interval [CI], 1.04 to 1.40; P = 0.01). At 28 days, death had occurred in 152 of 429 patients (35.4%) in the vitamin C group and in 137 of 434 patients (31.6%) in the placebo group (risk ratio, 1.17; 95% CI, 0.98 to 1.40) and persistent organ dysfunction in 39 of 429 patients (9.1%) and 30 of 434 patients (6.9%), respectively (risk ratio, 1.30; 95% CI, 0.83 to 2.05). Findings were similar in the two groups regarding organ-dysfunction scores, biomarkers, 6-month survival, health-related quality of life, stage 3 acute kidney injury, and hypoglycemic episodes. In the vitamin C group, one patient had a severe hypoglycemic episode and another had a serious anaphylaxis event. CONCLUSIONS: In adults with sepsis receiving vasopressor therapy in the ICU, those who received intravenous vitamin C had a higher risk of death or persistent organ dysfunction at 28 days than those who received placebo. (Funded by the Lotte and John Hecht Memorial Foundation; LOVIT ClinicalTrials.gov number, NCT03680274.).


Subject(s)
Ascorbic Acid , Sepsis , Adult , Ascorbic Acid/adverse effects , Humans , Hypoglycemic Agents/therapeutic use , Intensive Care Units , Multiple Organ Failure , Quality of Life , Sepsis/drug therapy , Vasoconstrictor Agents/adverse effects , Vitamins/adverse effects
2.
Front Med (Lausanne) ; 9: 800241, 2022.
Article in English | MEDLINE | ID: covidwho-1753376

ABSTRACT

Purpose: There may be a difference in respiratory mechanics, inflammatory markers, and pulmonary emboli in COVID-19 associated ARDS vs. ARDS from other etiologies. Our purpose was to determine differences in respiratory mechanics, inflammatory markers, and incidence of pulmonary embolism in patients with and without COVID-19 associated ARDS admitted in the same period and treated with a similar ventilation strategy. Methods: A cohort study of COVID-19 associated ARDS and non COVID-19 patients in a Saudi Arabian center between June 1 and 15, 2020. We measured respiratory mechanics (ventilatory ratio (VR), recruitability index (RI), markers of inflammation, and computed tomography pulmonary angiograms. Results: Forty-two patients with COVID-19 and 43 non-COVID patients with ARDS comprised the cohort. The incidence of "recruitable" patients using the recruitment/inflation ratio was slightly lower in COVID-19 patients (62 vs. 86%; p = 0.01). Fifteen COVID-19 ARDS patients (35.7%) developed a pulmonary embolism as compared to 4 (9.3%) in other ARDS patients (p = 0.003). In COVID-19 patients, a D-Dimer ≥ 5.0 mcg/ml had a 73% (95% CI 45-92%) sensitivity and 89% (95% CI 71-98%) specificity for predicting pulmonary embolism. Crude 60-day mortality was higher in COVID-19 patients (35 vs. 15%; p = 0.039) but three multivariate analysis showed that independent predictors of 60-day mortality included the ventilatory ratio (OR 3.67, 95% CI 1.61-8.35), PaO2/FIO2 ratio (OR 0.93; 95% CI 0.87-0.99), IL-6 (OR 1.02, 95% CI 1.00-1.03), and D-dimer (OR 7.26, 95% CI 1.11-47.30) but not COVID-19 infection. Conclusion: COVID-19 patients were slightly less recruitable and had a higher incidence of pulmonary embolism than those with ARDS from other etiologies. A high D-dimer was predictive of pulmonary embolism in COVID-19 patients. COVID-19 infection was not an independent predictor of 60-day mortality in the presence of ARDS.

3.
Clin Case Rep ; 8(12): 3234-3239, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-1335974

ABSTRACT

Peripheral neuropathies including Guillain-Barré syndrome may be linked to life-threatening COVID-19. Plasma exchange is a safe rescue therapy in severe COVID-19 with associated neurological manifestations and thromboinflammation.

4.
mBio ; 12(3)2021 05 04.
Article in English | MEDLINE | ID: covidwho-1216782

ABSTRACT

The outbreak of SARS-CoV-2 infection has enormously impacted our lives. Clinical evidence has implicated the emergence of cytokine release syndrome as the prominent cause of mortality in COVID-19 patients. In this study, we observed massive elevation of plasma Galectin-9 (Gal-9) in COVID-19 patients compared to healthy controls (HCs). By using the receiver operating characteristic (ROC) curve, we found that a baseline of 2,042 pg/ml plasma Gal-9 can differentiate SARS-CoV-2-infected from noninfected individuals with high specificity/sensitivity (95%). Analysis of 30 cytokines and chemokines detected a positive correlation of the plasma Gal-9 with C-reactive protein (CRP) and proinflammatory cytokines/chemokines such as interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), IP-10, MIP-1α, and MCP-1 but an inverse correlation with transforming growth factor ß (TGF-ß) in COVID-19 patients. In agreement, we found enhanced production of IL-6 and TNF-α by monocytes and NK cells of COVID-19 patients once treated with the recombinant human Gal-9 in vitro Also, we observed that although the cell-membrane expression of Gal-9 on monocytes does not change in COVID-19 patients, those with higher Gal-9 expression exhibit an activated phenotype. Furthermore, we noted significant downregulation of surface Gal-9 in neutrophils from COVID-19 patients compared to HCs. Our further investigations indicated that immune activation following SARS-CoV-2 infection results in Gal-9 shedding from neutrophils. The strong correlation of Gal-9 with proinflammatory mediators suggests that inhibition of Gal-9 may severe as a therapeutic approach in COVID-19 infection. Besides, the plasma Gal-9 measurement may be used as a surrogate diagnostic biomarker in COVID-19 patients.IMPORTANCE The outbreak of SARS-CoV-2 infection has enormously impacted our lives. Clinical evidence has implicated the emergence of cytokine release syndrome as the prominent cause of mortality in COVID-19 patients. We observed substantial elevation of the plasma Galectin-9 (Gal-9) in COVID-19 patients compared to healthy controls. Gal-9 is an abundant protein in many immune and nonimmune cells. We found that Gal-9 detection assay can differentiate SARS-CoV-2-infected from noninfected individuals with a specificity/sensitivity of 95%. Importantly, we found a positive correlation of the plasma Gal-9 with a wide range of proinflammatory biomarkers in COVID-19 patients. In agreement, we found enhanced expression and production of such proinflammatory molecules by immune cells of COVID-19 patients once treated with Gal-9 in vitro Our results propose Gal-9 as an important contributing factor in cytokine release syndrome; therefore, Gal-9 inhibition may serve as a beneficial therapeutic approach by suppressing the hyperimmune activation in COVID-19 patients.


Subject(s)
Biomarkers/blood , COVID-19/blood , COVID-19/diagnosis , Cytokine Release Syndrome/blood , Cytokine Release Syndrome/physiopathology , Galectins/blood , Sex Factors , Adult , Age Factors , Aged , Aged, 80 and over , Female , Healthy Volunteers , Humans , Male , Middle Aged , ROC Curve , SARS-CoV-2
5.
Int J Antimicrob Agents ; 57(5): 106334, 2021 May.
Article in English | MEDLINE | ID: covidwho-1213262

ABSTRACT

Assessment of efficacy of therapeutic plasma exchange (TPE) following life-threatening COVID-19. This was an open-label, randomised clinical trial of ICU patients with life-threatening COVID-19 (positive RT-qPCR plus ARDS, sepsis, organ failure, hyperinflammation). Study was terminated after 87/120 patients enrolled. Standard treatment plus TPE (n = 43) versus standard treatment (n = 44), and stratified by PaO2/FiO2 ratio (>150 vs. ≤150), were compared. Primary outcomes were 35-day mortality and TPE safety. Secondary outcomes were association between TPE and mortality, improvement in SOFA score, change in inflammatory biomarkers, days on mechanical ventilation (MV), and ICU length of stay (LOS). Eighty-seven patients [median age 49 (IQR 34-63) years; 82.8% male] were randomised (44 standard care; 43 standard care plus TPE). Days on MV (P = 0.007) and ICU LOS (P = 0.02) were lower in the TPE group. 35-Day mortality was non-significantly lower in the TPE group (20.9% vs. 34.1%; Kaplan-Meier, P = 0.582). TPE was associated with increased lymphocytes and ADAMTS-13 activity and decreased serum lactate, lactate dehydrogenase, ferritin, d-dimers and interleukin-6. Multivariable regression analysis provided several predictors of 35-day mortality: PaO2/FiO2 ratio (HR, 0.98, 95% CI 0.96-1.00; P = 0.02]; ADAMTS-13 activity (HR, 0.89, 95% CI 0.82-0.98; P = 0.01); pulmonary embolism (HR, 3.57, 95% CI 1.43-8.92; P = 0.007). Post-hoc analysis revealed a significant reduction in SOFA score for TPE patients (P < 0.05). In critically-ill COVID-19 patients, addition of TPE to standard ICU therapy was associated with faster clinical recovery and no increased 35-day mortality.


Subject(s)
COVID-19 Drug Treatment , COVID-19/etiology , Plasma Exchange/methods , Adult , COVID-19/mortality , COVID-19/therapy , Critical Care , Critical Illness , Female , Humans , Kaplan-Meier Estimate , Male , Middle Aged , Plasma Exchange/adverse effects , Treatment Outcome
6.
J Ultrasound Med ; 40(9): 1823-1838, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-921733

ABSTRACT

Scarce data exist regarding the natural history of lung lesions detected on ultrasound in those who survive severe COVID-19 pneumonia. OBJECTIVE: We performed a prospective analysis of point-of-care ultrasound (POCUS) findings in critically ill COVID-19 patients during and after hospitalization. METHODS: We enrolled 171 COVID-19 intensive care unit patients. POCUS of the lungs was performed with phased array (2-4 MHz), convex (2-6 MHz) and linear (10-15 MHz) transducers, scanning 12 lung areas. Chest computed tomography angiography was performed to exclude suspected pulmonary embolism. Survivors were clinically and sonographically evaluated during a 4 month period for evidence of residual lung injury. Chest computed tomography angiography and echocardiography were used to exclude pulmonary hypertension (PH) and chest high-resolution-computed-tomography to exclude interstitial lung disease (ILD) in symptomatic survivors. RESULTS: Cox regression analysis showed that lymphocytopenia (hazard ratio [HR]: 0.88, 95% confidence intervals [CI]: 0.68-0.96, p = .048), increased lactate (HR: 1.17, 95% CI: 0.94-1.46, p = 0.049), and D-dimers (HR: 1.21, 95% CI: 1.03-1.44, p = .03) were mortality predictors. Non-survivors had increased incidence of pulmonary abnormalities (B-lines, pleural line irregularities, and consolidations) compared to survivors (p < .05). During follow-up, POCUS with clinical and laboratory parameters integrated in the semi-quantitative Riyadh-Residual-Lung-Injury scale had sensitivity of 0.82 (95% CI: 0.76-0.89) and specificity of 0.91 (95% CI: 0.94-0.95) in predicting ILD. The prevalence of PH and ILD (non-specific-interstitial-pneumonia) was 7% and 11.8%, respectively. CONCLUSION: POCUS showed ability to monitor the evolution of severe COVID-19 pneumonia after hospital discharge, supporting its integration in clinical predictive models of residual lung injury.


Subject(s)
COVID-19 , Lung Injury , Critical Illness , Humans , Lung/diagnostic imaging , Lung Injury/diagnostic imaging , Point-of-Care Systems , SARS-CoV-2 , Ultrasonography
7.
BMC Cardiovasc Disord ; 20(1): 389, 2020 08 26.
Article in English | MEDLINE | ID: covidwho-730201

ABSTRACT

BACKGROUND: Fulminant (life-threatening) COVID-19 can be associated with acute respiratory failure (ARF), multi-system organ failure and cytokine release syndrome (CRS). We present a rare case of fulminant COVID-19 associated with reverse-takotsubo-cardiomyopathy (RTCC) that improved with therapeutic plasma exchange (TPE). CASE PRESENTATION: A 40 year old previous healthy male presented in the emergency room with 4 days of dry cough, chest pain, myalgias and fatigue. He progressed to ARF requiring high-flow-nasal-cannula (flow: 60 L/minute, fraction of inspired oxygen: 40%). Real-Time-Polymerase-Chain-Reaction (RT-PCR) assay confirmed COVID-19 and chest X-ray showed interstitial infiltrates. Biochemistry suggested CRS: increased C-reactive protein, lactate dehydrogenase, ferritin and interleukin-6. Renal function was normal but lactate levels were elevated. Electrocardiogram demonstrated non-specific changes and troponin-I levels were slightly elevated. Echocardiography revealed left ventricular (LV) basal and midventricular akinesia with apex sparing (LV ejection fraction: 30%) and depressed cardiac output (2.8 L/min) consistent with a rare variant of stress-related cardiomyopathy: RTCC. His ratio of partial arterial pressure of oxygen to fractional inspired concentration of oxygen was < 120. He was admitted to the intensive care unit (ICU) for mechanical ventilation and vasopressors, plus antivirals (lopinavir/ritonavir), and prophylactic anticoagulation. Infusion of milrinone failed to improve his cardiogenic shock (day-1). Thus, rescue TPE was performed using the Spectra Optia™ Apheresis System equipped with the Depuro D2000 Adsorption Cartridge (Terumo BCT Inc., USA) without protective antibodies. Over 5 days he received daily TPE (each lasting 4 hours). His lactate levels, oxygenation, and LV function normalized and he was weaned off vasopressors. His inflammation markers improved, and he was extubated on day-7. RT-PCR was negative on day-17. He was discharged to home isolation in good condition. CONCLUSION: Stress-cardiomyopathy may complicate the course of fulminant COVID-19 with associated CRS. If inotropic therapy fails, TPE without protective antibodies may help rescue the critically ill patient.


Subject(s)
Antiviral Agents/therapeutic use , Cardiotonic Agents/therapeutic use , Coronavirus Infections/therapy , Cytokine Release Syndrome/therapy , Plasma Exchange , Pneumonia, Viral/therapy , Respiratory Distress Syndrome/therapy , Shock, Cardiogenic/therapy , Takotsubo Cardiomyopathy/therapy , Adult , Betacoronavirus , COVID-19 , Coronavirus Infections/complications , Coronavirus Infections/diagnosis , Coronavirus Infections/drug therapy , Cytokine Release Syndrome/complications , Cytokine Release Syndrome/diagnosis , Drug Combinations , Echocardiography , Humans , Lopinavir/therapeutic use , Male , Pandemics , Pneumonia, Viral/complications , Pneumonia, Viral/diagnosis , Respiration, Artificial , Respiratory Distress Syndrome/etiology , Ritonavir/therapeutic use , SARS-CoV-2 , Shock, Cardiogenic/etiology , Takotsubo Cardiomyopathy/diagnostic imaging , Takotsubo Cardiomyopathy/etiology , COVID-19 Drug Treatment
8.
J Crit Care ; 60: 328-333, 2020 12.
Article in English | MEDLINE | ID: covidwho-703087

ABSTRACT

PURPOSE: We investigated the effect of therapeutic plasma exchange (TPE) on life-threatening COVID-19; presenting as acute respiratory distress syndrome (ARDS) plus multi-system organ failure and cytokine release syndrome (CRS). MATERIALS AND METHODS: We prospectively enrolled ten consecutive adult intensive care unit (ICU) subjects [7 males; median age: 51 interquartile range (IQR): 45.1-55.9 years old] with life-threatening COVID-19 infection. All had ARDS [PaO2/FiO2 ratio: 110 (IQR): 95.5-135.5], septic shock, CRS and deteriorated within 24 h of ICU admission despite fluid resuscitation, antibiotics, hydroxychloroquine, ARDS-net and prone position mechanical ventilation. All received 5-7 TPE sessions (dosed as 1.0 to 1.5 plasma volumes). RESULTS: All of the following significantly normalized (p < 0.05) following the TPE completion, when compared to baseline: Sequential Organ Function Assessment score, PaO2/FiO2 ratio, levels of lymphocytes, total bilirubin, lactate dehydrogenase, ferritin, C-reactive protein and interleukin-6. No adverse effects from TPE were observed. Acute kidney injury and pulmonary embolism were observed in 10% and 20% of patients, respectively. The duration of mechanical ventilation was 9 (IQR: 7 to 12) days, the ICU length of stay was 15 (IQR: 13.2 to 19.6) days and the mortality on day-28 was 10%. CONCLUSION: TPE demonstrates a potential survival benefit and low risk in life-threatening COVID-19, albeit in a small pilot study.


Subject(s)
COVID-19/therapy , Critical Illness/therapy , Plasma Exchange/methods , Respiratory Distress Syndrome/therapy , Adult , Aged , Bilirubin/blood , C-Reactive Protein/analysis , COVID-19/complications , Critical Care , Female , Ferritins/blood , Humans , Intensive Care Units , Interleukin-6/blood , L-Lactate Dehydrogenase/blood , Male , Middle Aged , Multiple Organ Failure/therapy , Patient Positioning , Pilot Projects , Prone Position , Prospective Studies , Respiration, Artificial , Respiratory Distress Syndrome/complications , Treatment Outcome
9.
Trials ; 21(1): 506, 2020 Jun 08.
Article in English | MEDLINE | ID: covidwho-574687

ABSTRACT

OBJECTIVES: To evaluate the safety of therapeutic plasma exchange (TPE) in adult patients with serious/life-threatening COVID-19 requiring intensive care unit (ICU) admission, and associated 28-day mortality. Serious and life threatening COVID-19 are defined as per published literature (please, refer to the full protocol, Additional file 1). The rationale is that TPE can remove interleukins-3, 6, 8, 10, interferon-gamma and tumor necrosis factor-alpha. Thus, it may reduce the cytokine release syndrome associated with fulminant COVID-19 disease. TRIAL DESIGN: Pilot, interventional, open-label, randomized controlled multicenter trial. PARTICIPANTS: Inclusion criteria are: 1) age ≥ 18 years old; 2) intubation and intensive care unit (ICU) admission; 3) serious and/or life-threatening COVID-19 (please, refer to the full protocol, Additional file 1). SARS-CoV-2 infection is confirmed by Real-Time-Polymerase-Chain-Reaction (RT-PCR) assays using QuantiNova Probe RT-PCR kit (Qiagen) in a Light-Cycler 480 real-time PCR system (Roche, Basel, Switzerland). Exclusion criteria are: 1) previous allergic reaction to plasma exchange or its ingredients (i.e., sodium citrate), 2) two consecutive negative RT-PCR tests for SARS-CoV-2 at least 24 hours apart, 3) mild COVID-19 not requiring ICU admission and 4) terminally ill patients receiving palliative care. The primary site will be King Saud Medical City (KSMC), Riyadh, Kingdom of Saudi Arabia (KSA). Also, the study will run in ICUs (Ministry of Health Cluster 1; Riyadh) and other centers in KSA pending their institutional review board (IRB) approval. INTERVENTIONS AND COMPARATOR: The intervention group will receive TPE, plus empiric treatment for COVID-19. TPE is administered using the Spectra Optia TM Apheresis System equipped with the Depuro D2000 Adsorption Cartridge (Terumo BCT Inc., USA). The first dose is 1.5 plasma volumes, followed by one plasma volume on alternate days or daily for five to seven total treatments. Spectra Optia TM Apheresis System operates with acid-citrate dextrose anticoagulant (ACDA) as per Kidney Disease Improving Global Outcomes (KDIGO) 2019 guidelines. Plasma is replaced with albumin 5% or fresh frozen plasma in patients with coagulopathy (prothrombin time >37 seconds; international normalized ratio >3; activated partial thromboplastin time >100 or fibrinogen level <100 mg/d). TPE sessions are performed daily over four hours and laboratory markers measured daily. The comparators are controls not receiving TPE but usual empiric treatment for COVID-19 as per institutional, national and international recommendations. Both groups will receive standard ICU supportive care. MAIN OUTCOMES: Primary study end-point is 28-day mortality and safety of TPE in serious and/or life-threatening COVID-19. Safety will be evaluated by the documentation of any pertinent adverse and/or serious adverse effects related to TPE as per institutional, national and international (Food and Drug Administration) guidelines. Secondary outcomes are: i) improvement in Sequential Organ Function Assessment (SOFA) score ; ii) changes in inflammatory markers: serum C-reactive protein, lactate dehydrogenase, ferritin, d-dimers and interleukin-6; iii) days on mechanical ventilation and ICU length of stay. RANDOMIZATION: Eligible consented patients are randomized (1:1 allocation) after stratification by ICU center and two PaO2/FIO2 ratio categories (> 150 and ≤ 150). Randomization occurs in variable block sizes of four to eight patients. A web-based randomization service, randomize.net, is used to allocate patients to their respective strata prior to the intervention or control therapy. BLINDING (MASKING): Given the visibility of TPE machinery, the intervention will be unblinded; hence, no enrollment concealment will be expedited. The lack of allocation concealment will be mitigated by several measures (please, refer to the full protocol, Additional file 1). NUMBERS TO BE RANDOMIZED (SAMPLE SIZE): This pilot randomized trial aims to recruit a convenience sample of patients with serious and/or life-threatening COVID-19. Therefore, at least 20 patients are to be randomized to each group per participating center. We are hoping to consent and randomize approximately 60 patients in each group over a 3 to 6 months period giving a total of 120 participants. TRIAL STATUS: The protocol version 1 was approved 29/04/2020. Recruitment is ongoing, and began on 01/05/2020. We estimate completion by 29/10/2020. TRIAL REGISTRATION: Registered at ISRCTN on 18/05/2020 (ISRCTN21363594; doi.10.1186/ ISRCTN21363594). FULL PROTOCOL: The full protocol is attached as an additional file, accessible from the Trials website (Additional file 1). In the interest of expediting dissemination of this material, the familiar formatting has been eliminated; this letter serves as a summary of the key elements of the full protocol.


Subject(s)
Betacoronavirus , Coronavirus Infections/therapy , Plasma Exchange , Pneumonia, Viral/therapy , Randomized Controlled Trials as Topic , COVID-19 , Coronavirus Infections/mortality , Humans , Multicenter Studies as Topic , Pandemics , Pilot Projects , Plasma Exchange/adverse effects , Pneumonia, Viral/mortality , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL